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Carnot’s cycle for small systems: Irreversibility and cost of operations
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In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a
Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual
machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the
recently developed framework of the energetics of stochastic processes~called ‘‘stochastic energetics’’! to
reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit.
We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat
baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irrevers-
ibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy
conversion over many cycles and the irreversible property of isolated, purely mechanical processes under
external ‘‘macroscopic’’ operations are discussed in relation to the impossibility of a perpetual machine, or
Maxwell’s demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy
converters in the near future.

PACS number~s!: 05.90.1m, 05.40.2a, 05.70.2a, 02.50.2r
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I. INTRODUCTION

A. Background

The principles of thermodynamics were established in
last century as the universal laws characterizing the ther
and mechanical behavior of macroscopic systems. The
that we cannot control all the details of energy transfer le
to the concept ofheat as a form of energy flow, and th
Carnot cyclehas played a crucial role in the course of inve
tigation leading to the introduction of entropy as a state v
able in addition to energy@1#. On the other hand, Brownia
motion and the stochastic dynamics of mesoscopic syst
in general have also been studied for many years, and
jection methods have allowed for the derivation of Lange
dynamics from microscopic Hamiltonian mechanics. In
properly defined Langevin equation, the influence of the
predictable microscopic dynamics, which essentially rep
sent the heat, is taken into account by Markovian rand
forces obeying the fluctuation-dissipation relationship. In t
manner, such an equation describes the canonical equ
rium distribution of the variables in question@2#.

Very recently, the concept of heat on mesoscopic sc
has been unambiguously defined in terms of Langevin
namics@3#. We refer to the formalism providing this defin
tion asstochastic energetics. The essential point of the think
ing behind this formalism is that the heat transferred to
system is nothing but the microscopic work done by both
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frictional forcesand the random force in the Langevin equ
tion. The theoretical framework resulting from this realiz
tion widens the scope of application of Langevin dynam
to the extent that it can be used to describe not merely e
librium states of system in contact with heat baths, but a
general thermodynamicprocessesconnecting different equi-
librium states. As a result, we can derive the first and
second laws of thermodynamics@3,4# from stochastic ener-
getics. This formalism, together with projection method
bridges a long-standing gap between microscopic Ham
tonian mechanics and macroscopic thermodynamics. In
paper we apply the method of stochastic energetics to
investigation of the Carnot cycle in the context of small sy
tems. To make this paper self-contained, we briefly summ
rize the framework of stochastic energetics in Sec. II.

Stochastic energetics has also been applied to the stud
thermodynamic processes under nonequilibrium conditio
such as processes including two heat baths@3# and processes
in the presence of steadily driving forces@5#. In particular,
the ratchet model of Feynmanet al. @6# has been analyzed
Regarding this model, doubt has been cast by Parrondo
Espanol@7#, and later by Sekimoto@3# independently, on the
attainability of reversible energy conversion with the ‘‘Ca
not efficiency’’ 12TL /TH , whereTL and TH are the tem-
peratures of the cool and hot heat baths. Analysis using
chastic energetics has shown explicitly that the efficiency
Feynman’s ratchet is much less than the Carnot efficie
mentioned above@3#.

B. Problems

With the descriptive power of stochastic energetics
hand, we wish to reconsider the Carnot cycle. We cons
7759 ©2000 The American Physical Society



-
w
to
t

s
a

n
a

lly
cr
e
on
a
o
e
ti
m
e
-
el
a
dy
ak
ll
ion
th

im
r o

d
th
e

e

dis
o

ffi
te
ly.
em
rn
d
sib
he
it

ve
ud

e
al
e
ri
r

nd
the
eat

ac-
u-
ch

gh
vin
re-

this

rs

om-
he
u-

heat
with
en
ore
ed
tion
r
n
si-
-

rn-
he
uf-
e
tem
ter-

ime
rger

ried
w-
ot
we
be-

to

le
arily
In
u-

ing
de

a-
rt of

in

in
the

7760 PRE 62KEN SEKIMOTO, FUMIKO TAKAGI, AND TSUYOSHI HONDOU
the Carnot cycle as anobjectof analysis within the theoret
ical framework of stochastic energetics. Note that, since
can derive the laws of thermodynamics directly using s
chastic energetics based on the Langevin description,
Carnot cycle in our study isnot a source of theoretical result
from which one derives the laws of thermodynamics, as w
its historical role.~Of course both the Langevin descriptio
and thermodynamics have a microscopic basis in mech
ics.!

We now describe our viewpoint in more detail. Usua
the Carnot heat engine is considered in an ideally ma
scopic context, working in the thermodynamic limit. Ther
the small relative fluctuations of the variables, typically
the order of the inverse square root of the system size,
neglected. Also, the cost involved in the operations
attaching/detaching the system under study to/from h
baths is neglected, since this is not an the extensive quan
It is important to note that the second law of thermodyna
ics, which is consistent with such a macroscopic Carnot
gine, can excludeonly marginally the existence of a per
petual machine of the second kind whose cycles yi
positive work in an isothermal environment. Thus we m
gain a deeper insight into the nature of statistical thermo
namics and mechanics if we can formulate a method to t
account of the finiteness of the system under study as we
the cost involved in operations of changing its interact
with heat baths, in particular considering reversibility and
second law of thermodynamics.

The approach of the present work is to construct the s
plest model of the Carnot heat engine with a finite numbe
degrees of freedom~actually only three!, including the appa-
ratus connecting/disconnecting it with heat baths, and to
termine the effect of the finiteness of the system and
change resulting from operations of the type mention
above. As the system of study~or the ‘‘working material’’!
we choose a single harmonic oscillator. We show that th
is an inevitable source of dissipation due to theintrinsically
irreversible nature of the operations of connecting and
connecting it with heat baths, and that, with the exception
such loss, our model can attain the Carnot maximal e
ciency defined as a properly defined average over infini
many cycles, each of which is performed infinitely slow
At the same time this study reveals several basic probl
that should be further scrutinized in the future: one conce
the smooth connection between the adiabatic process an
isothermal processes, and the other concerns the irrever
ity of adiabatic processes. In the last section we discuss t
problems as well as the problem of energy conversion w
no help from external operations.

In the remaining part of this section we give a qualitati
description of the aspects of the Carnot cycle that we st
in detail in the later sections.

1. The operations of connection to and disconnection
from the heat bath

We ask first how we can describemechanicallythe con-
nection and disconnection of the system to/from the h
baths. In an idealized picture, this description essenti
consists of the switching on and off of the interaction b
tween the system and each heat bath. In Sec. III we desc
explicitly a model that realizes these operations. We rep
e
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sent the influence of the heat baths by a frictional force a
the random force of a Langevin equation, and we control
strength of the coupling between the system and the h
baths by controlling the values of the corresponding inter
tion potentials. We call these interaction potentials ‘‘co
plers.’’ ~In an actual mechanical system, the control of su
a coupler could be exercised by a system of clutches.!

One could also imagine such control exercised throu
change of the friction constants that appear in the Lange
equation. Because of the absence of a definition of the
quired work to change these friction constants, however,
idea is not pursued in the present paper.

2. The reversible and irreversible work of operating the couple

The operation of the couplers can,in principle, never be
carried out quasistatically, but, at the same time, the acc
panying irreversible work can be made arbitrarily small. T
former part of this assertion is based on the following arg
ment: When the interaction between the system and a
bath is strong, the energy transfer between them occurs
a short relaxation time. However, if we gradually weak
this interaction, this relaxation time increases more and m
until it diverges when the system is completely detach
from the heat bath. As long as the time scale of the opera
~i.e., the switching off! is finite, this operation can neve
remain ‘‘slow’’ in comparison to the diverging relaxatio
time. Thus the switching-off process is by no means qua
static, or quasiequilibrium.~This is analogous to the nonadia
baticity encountered in chemical reactions; the Bo
Oppenheimer approximation is inevitably invalid when t
distance between nuclei is neither sufficiently large nor s
ficiently small.! Inevitable irreversibility can also exist in th
process of strengthening the interaction between the sys
and the heat bath. Such extreme strengthening of the in
action leads to the freezing of some degree~s! of freedom
involved in the interaction, and the mean first-passage t
associated with these degrees of freedom may become la
than the time scale of the operation~i.e., the strengthening!.
In such a situation also, the operation can never be car
out quasistatically. Unlike the switching-off process, ho
ever, the indefinite strengthening of the interaction is n
necessarily a part of the Carnot cycle. Despite this fact,
consider the latter process in the sections that follow,
cause this allows us to minimize the calculations needed
reach a general conclusion.

We should, however, note that the inevitably irreversib
nature of the operations described above does not necess
imply an associated large amount of irreversible work.
Sec. IV we analyze the work involved in operating the co
pler and show that the amount of irreversible work result
from these inevitably irreversible operations can be ma
arbitrarily small in the limit that the time scale of the oper
tion becomes large. We also show that the reversible pa
the work associated with these operations remains finite
this limit, but that it cancels out within a cycle.

3. The condition for reversible contact between the system
and a heat bath

Temporarily putting aside the concept of irreversibility
the sense described in Sec. I B 2 above, we can scrutinize
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remaining part of the cycle and ask if and how the Car
maximum efficiency can be attained. With regard to a m
roscopic Carnot cycle, according to textbook descriptions
order to realize a reversible cycle, ‘‘the temperature of
system should be the same as that of the heat bath
which the system is to make contact after an adiabatic p
cess.’’ Strictly speaking, however, the energy, rather than
temperature, takes a definite value in a thermally isola
system, and the above statement needs to be refined in t
of the language of probability. We argue in Sec. V that
versible contact requires the probability distribution of t
energy of the system just before interaction with a heat b
to be identical to the canonical distribution at the temperat
of the heat bath. This condition can be satisfied if the sys
consists of harmonic oscillators, like the model describ
below. Generally, however, this is not the case, and in
general situation an irreversible process takes place wh
system contacts a heat bath, even though there occurs n
irreversible energy transfer between the two~Sec. VII A!. In
Sec. VI A we summarize the necessary conditions for
Carnot cycle to realize the maximal efficiency 12TH /TL
without assuming the thermodynamic limit. We show at t
same time that this actually is the case for the model
scribed in Sec. III.

4. Statistics of the efficiency of a finite number of cycles

The efficiency of the energy conversion of anindividual
cycle is statistically distributed, because the energy p
sessed by the system is different each time the system
disconnected from a heat bath. This fact reflects the inde
minate nature of the details of the microscopic states of
system and of the heat bath upon disconnection. As a co
quence, if we define the cumulative ‘‘bonus’’ work as th
difference between the cumulative work obtained oven
cycles and what we would expect from the Carnot maxim
efficiency, this bonus work takes the form of a discrete r
dom walk as a function ofn. We show in Sec. VI B and
Appendix B that the so-called null-recurrence property o
one-dimensional random walk ensures that, although if
actually carry out a sequence of these cycles the cumula
bonus work we obtain will with probability 1 first becom
positive after a finite number of repetitionsn* , the statistical
average ofn* is infinite.

5. Irreversibility of adiabatic processes

The Carnot cycle includes an adiabatic process tha
purely mechanical. We are interested in determining w
work can be obtained through the cycle including nonqua
static adiabatic processes. If the efficiency in this case
increased in comparison to the quasistatic case, the exist
of a perpetual machine of the second kind is inspired,
cause our Carnot cycle can attain the maximal~reversible
limit ! efficiency under certain conditions specified in Se
VI A. In Sec. VII B we show that, in relation to the impos
sibility of a perpetual machine, there emerges the concep
the irreversibility of purely mechanical processes~with no
assumption of the thermodynamic limit or mixing properti
necessary! under the influence of ‘‘macroscopic’’ operation
by an external agent. Here, designation of an operation
‘‘macroscopic’’ implies that~i! we are ignorant of the initia
t
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phase point on a given energy surface, and~ii ! we are inter-
ested only in the statistical average over such an initial
semble at a given energy.

II. BRIEF SUMMARY OF STOCHASTIC ENERGETICS

We consider a Langevin equation that represents a sys
in contact with a heat bath at temperatureT,

dx

dt
5

p

m
,

~1!
dp

dt
52g

p

m
2

]U~x,a!

]x
1j~ t !.

Here we denote byx and p the dynamical variable of the
system and its conjugate momentum, whilem represents the
mass,g the friction constant, andU the potential energy for
x. We assume thatU may depend on, in addition tox, the
variable~or variables! a, which is controlled by an externa
agent ~or agents!. The function j(t) represents, as usua
Gaussian white noise obeying the relations~hereafter we
adopt units in whichkB51)

^j~ t !&50, ^j~ t !j~ t8!&52gTd~ t2t8!. ~2!

The second relation~Einstein’s relation! insures a canonica
distribution ofx andp at temperatureT if the parametera is
held fixed for an infinitely long time.

Multiplication of each term in the second equation in~1!
by the displacementdx yields the equation@8#

d

dt S p2

2mDdt5S 2g
p

m
1j~ t ! Ddx2

]U~x,a!

]x
dx, ~3!

where we have used the first equation of Eq.~1! and also
the identity (dp/dt)dx5(dp/dt)(p/m)dt. We note that
2@2g(dx/dt)1j(t)# is the reaction force exerted by the
system against the heat bath, since the frictional fo
2g(dx/dt) and the random forcej(t) are both due to the
heat bath. We identify the work done by the reaction force
the heat transferred from the system to the heat bath, wh
we denote by (2dQ) @3#:

2dQ[2S 2g
dx

dt
1j~ t ! Ddx. ~4!

~The minus sign in front ofdQ is included to conform to the
convention of thermodynamics textbooks.! The key point of
introducing the concept of heat is that, although the heat b
is idealized and not affected by the system’s dynamics, it
still be subject to a reaction force exerted by the syste
Adding the total differentialdU to both sides of Eq.~3!, we
obtain the general expression for theenergy balanceas

dS p2

2m
1U D5

]U

]a
da1dQ. ~5!

Now, because the left-hand side~LHS! is the total increase
of the energy, anddQ is the energy input to the system a
heat, the first term on the RHS of Eq.~5! must be identified
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as thework done by the external system,dW, on the system
through the change of variablea,

dW[
]U

]a
da. ~6!

We conclude that the law of energy balance expressed a

dE5dW1dQ, E[
p2

2m
1U ~7!

is satisfied for anysinglerealization of the stochastic proce
described by Eq.~1!.

For a quasistatic process, in whichuda/dtu is arbitrarily
small, the work is reversible and is equal to the change in
Helmholtz free energyF(T,a) with probability 1. That is, in
an ensemble of infinitely many realizations of such a p
cess, the probability distribution of the work becomes a po
distribution concentrated at the value ofF(T,a):

dW5dF~T,a! ~ for a quasistatic process withT fixed!,
~8!

with

F~T,a![2T lnF E E e2E/TdxdpG . ~9!

The derivation of Eq.~8! is as follows. We first note that, fo
a to change by any small but finite amountda, it takes a
time udau/uda/dtu, which is indefinitely large in the quasi
static limit. During this time interval the state point (x,p)
comes arbitrarily close to almost all possible values, and
empirical distribution becomes asymptotically equal to
canonical distribution, Peq(x;T,a)5exp$@F(T,a)2E#/T%.
~The exception here is the case in which the interval@a,a
1da# includes a point at which the equilibration time d
verges. See Sec. I B 2 and Sec. I B and § IV below.! We can
then evaluate (]U/]a)da using its average with respect t
Peq in the quasistatic limit. Using the identity

E dx
]U~x,a!

]a
Peq~x;T,a!5

]F~T,a!

]a
~T fixed!, ~10!

we reach the result Eq.~8!.
In fact Eq.~8! is a stronger statement than the usual s

ond law of thermodynamics for extensive systems. Note
for a thermodynamic system constituted by an ensemble
large number of independent stochastic systems obeying
~1!, the first law of thermodynamics is obtained from Eq.~7!,

^dE&5^dW&1^dQ&, ~11!

and the second law of thermodynamics for quasistatic p
cesses is obtained from Eq.~8! @4,9#,

^dW&5dF~T,a! ~ for a quasistatic process withT fixed!.
~12!

These relations are concerned with only the ensemble a
ages denoted bŷ•&. It has also been shown@4# that, for a
finite rate of change ofa(t), the Clausius inequality

^dW&>dF~T,a! ~13!
e

-
t

ts
e

-
at
a
q.

-

r-

holds, and an explicit formula for theirreversible work
^dW&2dF(T,a) has been obtained up to the second orde
da/dt.

III. MODEL

Figure 1 schematizes the idea of our model. We emplo
single harmonic oscillator with massm and spring constan
k (.0) as the system under study, which we call simply t
‘‘system.’’ We denote byx andp the position and momen
tum of the system. Increasing~decreasing! the value ofk
corresponds to compressing~decompressing! the ideal gas.
Below, we considerk to be a quantity that can be controlle
as the volume of a gas system is controlled in macrosco
Carnot cycles.

In order to allow independent and variable interacti
with each heat bath, we represent each such interaction in
form of a mechanical force, which subsumes the correspo
ing frictional and Gaussian random forces. Such mechan
forces should be related in some way to the degrees of f
dom that directly interact with the heat baths, which we d
note byyH andyL . For simplicity, we do this by writing the
mechanical forces as interaction forces,2]fH /]x and
2]fL /]x. As interaction potentials, we choose functio
fH(x2yH ,xH) andfL(x2yL ,xL), wherexH andxL are the
control parameters. We callfH andfL the couplers, becaus
their values directly indicate the strength of the coupli
between the system and the corresponding heat bath. We
expressions like ‘‘control the coupler~s!’’ in reference to
changes made in the values of these control parameters
assume that the functionsfa (a5H, L) are 2p-periodic
functions of x2ya . ~For details, see Sec. IV and Fig.
below.! The degrees of freedomyH andyL are subject to the
frictional forces2gH(dyH /dt) and 2gL(dyL /dt) and the
random forcesjH(t) and jL(t) exerted by the heat baths a
temperaturesTH andTL , respectively, as well as the intera
tion forces from the system,2]fH /]yH and 2]fL /]yL .
Here, gH and gL are the friction constants, andjH(t) and
jL(t) are the white Gaussian random forces satisfy
^jH(t)jH(t8)&52gHTHd(t2t8), ^jL(t)j_L(t8)&52gLTLd(t
2t8), and^jH(t)jL(t8)&50. The equations of motion forx,
p, yH , andyL are given as follows:

FIG. 1. Schematic view of a Carnot heat engine. The spring
the shaded linear ‘‘gear’’ represent the harmonic oscillator as
system. The left end of the spring~the black box! is fixed. Heat
baths of temperaturesTH and TL ~the square shaded boxes! exert
forces on the vanes~the star-shaped symbols inside the heat bat!
whose angles of rotation are denoted byyH and yL , respectively.
These vanes are tightly connected to the circular gears. These
cular gears can interact with the system in a manner that depend
the control parametersxH andxL of the couplers.
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dx

dt
5

p

m
, ~14a!

dp

dt
52kx2

]fH

]x
2

]fL

]x
, ~14b!

gH

dyH

dt
52

]fH

]yH
1jH~ t !, ~14c!

gL

dyL

dt
52

]fL

]yL
1jL~ t !. ~14d!

We consider the gears of the heat bath and the syste
be ‘‘tightly connected’’ ~i.e., completely engaged! for xa
51, that is, the interactionfa(x2ya,1) is so strong that the
differencex2ya is fixed except for a small thermal fluctua
tion around its mean value, while these gears are ‘‘disc
nected’’ ~i.e., completely disengaged! for xa50, that is,
fa(x2ya,0)[0. We have neglected the inertia effect r
lated toyH andyL , as they would play only a secondary ro
for our analysis.

The protocol by which we control the parameters is re
resented in the space of (k,xH ,xL) as shown in Fig. 2. In the
figure, the paths along the axis (xH ,xL)5(0,0) correspond
to adiabatic processes, while the vertical paths w

FIG. 2. The cycle undergone by the control parameters.
various legs of this cycle correspond to the following processe
the system: isothermal processes (BH→CH andDL→AL), adiabatic
processes (A0→B0 and C0→D0), and the remaining processe
where only one of the two control parameters of the coupler
changed~i.e. xHÞ0 exclusively orxLÞ0) while k is kept constant.
to

-

-

h

(xH ,xL)5(1,0) and (xH ,xL)5(0,1) correspond to isother
mal processes. The values ofk corresponding to the fou
horizontal paths are the parameters.

IV. REVERSIBLE AND IRREVERSIBLE WORK
OF OPERATING THE COUPLERS

As we discussed in Sec. I, the operation of the coup
can never be made quasistatic, because the time scale o
operation inevitably becomes shorter than the equilibrat
time for the system when the coupling between the sys
and a heat bath becomes either absent or extremely tigh
addition to the work due to these irreversible processes, th
is also reversible work associated with operation of the c
plers.

Figure 3 illustrates the generic features of the poten
fa(z,xa) for three different values ofxa . Here F0 , F1,
and F` represent the height of each potential profile. W
assume that the height offa(z,xa) is a monotonically in-
creasing function of xa and satisfies maxzf(z,0)50,
maxzf(z,xa 0)5F0(!Ta), maxzf(z,xa1)5F1(@Ta), and
maxzf(z,1)5F`(.F1) with 0,xa0,xa1,1.

There are two situations in which the time scale of me
surement and/or operation cannot exceed the equilibra
time of the system. One is when the height offa is very
small, and the other is when the height offa is very large.
Let us assume that the regime 0,xa,xa0 corresponds to
the former case; that is, for maxzfa(z,xa)<F0, the interac-
tion fa is so weak that the equilibration time of the syste
with the heat bath (T5Ta) is beyond the time scale of mea
surement and/or operation. We call this theloose regime.
Then we assume that the regimexa1,xa,1 corresponds to
the latter case; that is, for maxzfa(z,xa)>F1, the interaction
fa is so strong that the equilibration time characterized
the over-barrier transition ofz ~see Fig. 3! is again beyond
the time scale of measurement and/or operation. In part
lar, we assume that forxa51 there occur essentially n
thermal activation events over the barrierF` . We call this
the tight regime. In the remaining regime,xa0<xa<xa1 we
assume that the operation can be carried out in a manner
arbitrarily closely approximates the quasistatic limit. No

e
of

is

FIG. 3. The profiles of the interaction potentialfa are given as
functions ofz[x2ya for three typical values of the maximum o
fa , F0 , F1, andF` , whereF0!Ta!F1,F` ~see the text!.
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that what Kramers calls the ‘‘small viscosity’’ and ‘‘larg
viscosity’’ cases in Ref.@10# correspond, respectively, to th
limits of the loose and tight regimes.

We now evaluate the work

Wa~xa1→xa2![E
xa5xa1

xa2 ]fa@x~ t !2ya~ t !,xa~ t !#

]xa
dxa~ t !

~15!

for the loose and tight regimes using Eq.~6!. We will de-
scribe the case ofa5H for concreteness.~The case ofa
5L can be treated similarly.! In the loose regime~the pro-
cesses nearB0 and C0 in Fig. 2!, WH(0→xH0) is of order
F0 and is small (!TH), although this work may be mostl
irreversible. SinceF0 is associated with the lower limit o
quasistatic operation, the time scale of the operation is
quired to be large enough to satisfy the conditionF0!TH .

In the tight regime~the processes nearBH andCH in Fig.
2!, the situation is more subtle. The contribution
WH(xH1→1) consists of~i! the contribution produced whe
z moves around the valley regions offH(z,xH) with fH
&F1 and ~ii ! the contribution produced whenz visits, by
rare thermal excitation, the barrier regions offH . To sim-
plify the analysis we exclude the former contribution by a
suming that]fH(z,xH)/]xH50 for z in the valley regions of
fH ~Fig. 3! in the tight regime.~This assumption is only
technical; one can reach the conclusion of this paragr
without it.! The evaluation of the contribution~ii ! above is
carried out as follows. The probability of findingz in the
barrier region is;e2F1 /T, and for such values ofz the
change ofxH from xH1 to 1 results in an amount of wor
;(F`2F1). Thus we haveWH(xH1→1);e2F1 /T(F`

2F1);e2F1 /TF` . Because the time scale of operation
sufficiently large to allow large values ofF1, the conditions
e2F1 /TF`!T and F`@T can be satisfied simultaneousl
In conclusion, the irreversible part of the work associa
with both the loose regime and the tight regime can be m
as small as we wish by making the time scale of the ope
tion sufficiently long in these regimes. The same conclus
holds for the case ofa5L.

The quasistatic work associated with the change ofxa
within the regionxa0<xa<xa1 can be evaluated using Eq
~8!. Below we show that such quasistatic work cancels
actly when summed over the consecutive operations
connection to and disconnection from a heat bath. Ag
considering the case of a5H, we denote by
F„TH ,k,xH,0(5xL)… the Helmholtz free energy of the com
posite system of the harmonic oscillator and the coupl
$p,x,yH ,yL%:

e2F(TH ,k,xH,0)/TH[2pE
2`

`

dpE
2`

`

dxE
0

2p

dyH

3expH 2
1

TH
F p2

2m
1

kx2

2

1fH~x2yH ,xH!G J . ~16!
e-

-

h

d
e

a-
n

-
of
,

s,

Note that herexL50 and the factor 2p in front of the inte-
gration on the RHS comes from the phase integration o
yL . Performing the integration overyH first, we have

F~TH ,k,xH,0!52
TH

2
ln

~2p!4~TH!2m

k
1F̃~TH ,xH,0!,

~17!

with F̃ defined by

e2F̃(TH ,xH,0)/TH5E
0

2p

dze2fH(z,xH)/TH. ~18!

The first term on the RHS of Eq.~17! is independent ofxH ,
while F̃ is independent ofk. Using the notation of Eq.~15!,
we find from Eq.~17! that WH(xH0→xH1)5F̃(TH ,xH1,0)
2F̃(TH ,xH0,0) along B0→BH in Fig. 2, and WH(xH1

→xH0)5F̃(TH ,xH0,0)2F̃(TH ,xH1,0) along CH→C0.
These two cancel exactly:

WH~xH0→xH1!1WH~xH1→xH0!50. ~19!

The actual time interval required to changexa betweenxa0
andxa1 is finite, say,t01. The irreversible work due to this
finiteness has been shown to beO(t01

21) quite generally@4#.
Thus the irreversible work associated with the process
which xa is changed betweenxa0 andxa1 can be made as
small as we wish by making the time scale of operat
sufficiently long.

For later use, we now also estimate the heat exchan
upon the operation of the couplers. As we have sho
above, the amount of work in the loose and tight regimes
be made arbitrarily small. Also, changes in the parame
xa lead to only small changes of the internal energy of
composite system. These facts together with the energy
ance principle@see Eq.~7!# lead to the conclusion that th
heat exchanged in these two regimes can be made as sm
we wish. Next, the heat exchanged during the quasiequ
rium processes withxa0,x,xa1 is assessed as follows
From Eq.~17! the ensemble average of the internal energy
the composite system is given by TH1@1
2TH(]/]TH)#F̃(TH ,xH,0). If we define by^Q(B0→BH)&
the average heat influx to the composite system during
quasiequilibrium operation alongB0→BH , the condition of
energy balance, Eq. ~11!, yields ^Q(B0→BH)&5

2TH(]/]TH)@ F̃(TH ,xH1,0)2F̃(TH ,xH0,0)#. This heat can-
cels exactly the average heat input^Q(CH→C0)& similarly
defined alongCH→C0:

^Q~B0→BH!&1^Q~CH→C0!&50. ~20!

In the same manner, we can show the cancellation of b
the work and the heat during the quasistatic part of the
eration of coupler alongD0→DL andAL→A0.

V. MATCHING THE ‘‘TEMPERATURE’’ OF THE SYSTEM
AND A HEAT BATH

Here we study the meaning of the idea of matching
‘‘temperature’’ of the small system with that of a heat ba
For comparison, we note that this meaning is unambigu
for an isolated macroscopic thermodynamic system,
which the energy and the temperature are simultaneo
well-defined quantities, and, in order to realize a reversi
Carnot cycle, the temperature of the system should be
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same as that of the heat bath with which it makes contac
contrast, for isolated small systems, the energy takes a
nite value, while the temperature is not generally well d
fined. We will show in this section that if the small system
a harmonic oscillator the concept of the temperature is
useful, and reversibility can be obtained as in macrosco
systems. Discussion regarding the general case is give
Sec. VII A.

Suppose that a coupler is operated quasistatically u
the edge of a loose regime (xL5xL0 along AL→A0 or xH
5xH0 alongCH→C0 in Fig. 2!. The energy of the oscillato
in this situation fluctuates as a function of time and, althou
the temporal fluctuation of the energy is very slow, it s
obeys the canonical distribution at the temperature of
heat bath (TL for A0 andTH for C0) up to a small error of
O(F0)(!Ta). By the definition of the loose regime, furthe
weakening the connection results in a situation in wh
there is no appreciable exchange of energy between the
tem and the heat bath~see Sec. I and IV!. Then complete
disconnection leaves an isolated system whose energy is
tributed according to the canonical distribution correspo
ing to the temperature of the heat bath. This is in fact t
even if the small system is not a harmonic oscillator.

For a harmonic oscillator, however, both the energy d
tribution in the canonical ensemble and the transformation
the system’s energy through the quasistatic adiabatic pro
have special features. The energy distribution in the can
cal ensemble at temperatureT, Pcan(E;T), is independent of
the parameterk:

Pcan~E;T!5
1

T
e2E/T. ~21!

~See Appendix A for a derivation.! Thus, atA0 andC0, the
energy of the oscillator is distributed according
Pcan(E;TL) and Pcan(E;TH), respectively. If the oscillator
has a specific~initial! energyE and undergoes the quasista
adiabatic process represented asA0→B0 or C0→D0 in Fig.
2, its energyE(k) changes so that the valueJ(E,k) given by
Eq. ~A3! remains constant@11#:

J„E~k!,k…5
E~k!

2p
Am

k
5const . ~22!

The relation~22! determines the change of the energy dis
bution when the system undergoes a quasistatic adiab
process through the change ofk: For a change fromk to k8,
the altered distributionP8(E8) must obey Pcan(E,T)dE
5P8(E8)dE8 with E8/(2pAk8/m)5E/(2pAk/m). Thus
we obtain the energy distribution of a canonical ensem
after the change ink, P8(E8)5Pcan(E8,T8), with T8 being
defined by T/Ak5T8/Ak8. However, we note that this
simple situation is due to the special nature of the harmo
oscillator system. The general case is discussed in
VII A.

With these facts in mind, we can now characterize
condition for a quasiequilibrium transition between adiaba
processes and subsequent isothermal processes:~1! The en-
ergy distribution of the system before the connection w
the heat bath must be that of a canonical ensemble;~2! the
temperature characterizing this canonical ensemble mus
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the same as that of the heat bath in question. The reaso
that, under these conditions, the system upon connection
haves statisticallyas if it had been in contact with the hea
bath for a long time. Note that the connection should
begun through a sufficiently weak interaction;F0 ~see Sec.
IV !. In our case with the protocol described by Fig. 2, w
require thatT85TH at B0 andT85TL at D0 hold. Denoting
the value ofk betweenA0 and AL as kA , that betweenB0
and BH as kB , etc., the condition for a quasiequilibrium
connection to the heat bath is given explicitly as follows:

TL

AkA

5
TH

AkB

,
TH

AkC

5
TL

AkD

. ~23!

VI. EFFICIENCY

A. How is the Carnot limit approached?

We now evaluate the maximal overall efficiency. W
must take into account~i! the operation of the couplers,~ii !
the isothermal processes, and~iii ! the adiabatic processes.

~i! We assume that, by making the time in the loose a
tight regimes sufficiently long, the intrinsically irreversib
work and heat flow can be made as small as we wish.
remaining part of the operation of the couplers is assume
be made under quasiequilibrium conditions. The accompa
ing work and heat flow cancel exactly when summed over
infinite number of consecutive connections and disconn
tions from the heat bath@see Eqs.~19! and ~20!#.

~ii ! For the isothermal parts of the cycle,BH→CH and
DL→AL , we assume a quasistatic change ofk. The accom-
panying work is then given using the general formula E
~8!. For the partBH→CH , F(T,a) in Eq. ~8! is replaced by
F(TH ,k,xH,0) of Eq.~17!, and the work done by the system
is (TH/2)ln(kB /kC), which we denote by2W(BH→CH).
Similarly, for the partDL→AL the work is2W(DL→AL)
5(TL/2)ln(kD /kA). Then, from relation~23!, we have

2W~BH→CH!2W~DL→AL!5
TH2TL

2
lnS kB

kC
D . ~24!

~iii ! For the adiabatic part of the cycle,A0→B0 and C0
→D0 , we also assume a quasistatic change ofk. The energy
of the system then obeys the law~22! and the amounts o
work done by the system in the adiabatic proces
2W(A0→B0) and 2W(C0→D0) are given by 2W(A0

→B0)5E(kA)(12AkB /kA) and 2W(C0→D0)5E(kC)(1
2AkD /kC). As the energiesEA andEC obey the distribution
Eq. ~21! with T5TL andT5TH , respectively, their statisti-
cal averages arêEA&5TL and^EC&5TH @up to a small error
of O(F0)#. Using Eq.~23!, we then have

2^W~A0→B0!&2^W~C0→D0!&

5TLF12AkB

kA
G1THF12AkD

kC
G50. ~25!

While we obtain this simple result in the present case, i
important to note that the cancellation of the contributio
from the adiabatic processes on the average is not a ge
feature of the Carnot cycle~consider, for example, nonidea
gases!.
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The heat influx from the high temperature heat bath
evaluated as follows. While the work during the isotherm
quasiequilibrium processes is a nonfluctuating quantity@see
Eq. ~8!#, both the energy influx from the heat bath and t
system’s energy fluctuate subject to the constraint of ene
balance described by Eq.~7!. From Eqs.~17! and ~18! we
can show that the average internal energy of the compo
system with degrees of freedom$p,x,yH ,yL% is independent
of the parameterk. Therefore, the statistical average of t
heat influx during the isothermal processBH→CH , which
we denote bŷ Q(BH→CH)&, satisfies

05^Q~BH→CH!&1W~BH→CH!. ~26!

Thus we have

^Q~BH→CH!&5
TH

2
lnS kB

kC
D . ~27!

As we have seen in Sec. IV, there is no net heat flow du
the quasistatic part of the operation of the coupler@see Eq.
~20!#, while the heat transfer associated with the loose
tight regimes can be made as small as we wish.

Collecting the above results, the maximal overall e
ciency hmax of the cycles is reduced to the following fo
mula:

hmax52
W~BH→CH!2W~DL→AL!

^Q~BH→CH!&
. ~28!

Then, using Eqs.~24! and ~27!, we have

hmax512
TL

TH
. ~29!

We would like to stress that the attainment of this e
ciency ~whose expression is familiar from textbook trea
ments! is not due to the quasistatic operation of the wh
system. In the situation we consider, we have seen that s
parts of the cycle can never be carried out quasistatica
due to the intrinsically irreversible operation of the couple
~Sec. IV!, as well as the intrinsic irreversibility resultin
from the noncanonical energy distribution of the syst
caused by the adiabatic processes~Sec. V!.

B. Statistics over a finite number of cycles

The maximal efficiency Eq.~29! obtained above repre
sents exclusively the ratio of the total work done by t
system to the total energy influx from the high temperat
heat bath through an infinite number of cycles. Here we c
sider the efficiency for a single cycle,h loc , which can be
written as

h loc5
@~TH2TL!/2# ln~kB /kC!2dW

~TH /2!ln~kB /kC!1dQ
, ~30!

with

2dW52W~A0→B0!2W~C0→D0!

and
s
l

y

ite

to

d

-

e
y,
s

e
-

dQ5$Q~B0→BH!1Q~CH→C0!%

1H Q~BH→CH!2
TH

2
lnS kB

kC
D J . ~31!

We first note several properties ofh loc .
~1! The deviationsdW anddQ do not vanish, even in the

quasiequilibrium limit, since the system continues to e
change energy with a heat bath until the moment that i
disconnected from the heat bath.

~2! If we choose the initial point of an individual cycle t
be somewhere betweenDL andAL , then the values ofh loc
2^h loc& for different cycles are statistically independent.
fact, the statistical deviations ofW(A0→B0) and W(C0
→D0) are mutually uncorrelated because of the interven
isothermal Markov processesBH→CH and DL→AL , while
W(A0→B0) and Q(B0→BH) are statistically correlated
through the shared pointB0, as areQ(CH→C0) andW(C0
→D0) through the pointC0.

~3! One can define the excess output2W° by

2W° [~h loc2hmax!FTH

2
lnS kB

kC
D1dQG52dW2hmaxdQ .

~32!

A positive value of2W° implies that we happened to ge
more work than that expected from the Carnot maximal
ficiency ~i.e., 2dW.hmaxdQ). Such a situation can resu
through fluctuations, and it is not in contradiction with th
second law of thermodynamics. However, we may then
how many cycles on average we must carry out before

first obtain a cumulative excess output2w° n[( i 51
n (2W° i),

where2W° i is the excess output of thei th cycle andn is the
total number of consecutive cycles. The point of this qu
tion can be understood in terms of the following appar

paradox: Suppose one monitors2w° n as a function ofn and
stops when it becomes positive for the first time. If one co
repeat such a procedure of monitor and stop indefinit
many times, one could construct a perpetual machine of
second kind. This, of course, would be in contradiction w
the second law of thermodynamics. A pitfall of this fals
argument is that, although for a given sequence of cycles,

condition 2w° n.0 will be satisfied at some finiten with
probability 1, theaverageover separate sequences of t

smallest value ofn with positive2w° n is divergent. This fact
is closely related to the fact that the one-dimensional rand
walk is ‘‘null recurrent’’ ~see Appendix B!.

VII. DISCUSSION

A. Irreversibility resulting from contact with a heat bath

In Sec. V we used the fact that for the harmonic oscilla
system, as a result of quasistatic adiabatic process, the
ergy changes in such a manner that the energy distribu
remains in canonical form, with simply a change of the te
perature,T→T8. However, the harmonic oscillator repre
sents a special system, and this is not generically the c
with any Hamiltonian. More generally, the energy distrib
tion Pcan(E,T) is distorted into some noncanonical for
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P8(E) as a result of the quasistatic adiabatic process. W
an ensemble of systems following the distributionP8(E) is
brought into ~weak! contact with a heat bath of arbitrar
temperatureT8, the energy distributionirreversibly relaxes
to the canonical formPcan(E,T8). This is the case even ifT8
is chosen so that*EP8(E)dE5*EPcan(E,T8)dE, i.e., even
in the case that no net heat is transferred on the average
the bath to the system. The relevance of this irrevers
relaxation to the energetics of small systems requires fur
scrutiny. This will be discussed in more detail in a separ
paper@12#.

B. Irreversible adiabatic process

The adiabatic process in the Carnot cycle is a mechan
process. The ergodic invariant theorem@13# tells us that, un-
der quasistatic and adiabatic change of a system param
saya, by a finite amount, the phase volume enclosed by
energy surface defined by the system’s energy at each
ment, J(E,a) @see Eq.~A2! for a definition#, remains con-
stant. The theorem does not assume the thermodynamic
nor the presence or absence of chaotic trajectories. Cont
ingly, for a nonquasistatic processJ(E,a) can either increase
or decrease, depending on both the nature of the changea
and the initial conditions of the system.

In the context of the present paper, however, it is m
meaningful to confine ourselves to only ‘‘macroscopic’’ e
ternal operations, excluding ‘‘demonic’’ ones that depend
detailed information of the system. More precisely, we foc
on an unprejudiced choice of the initial conditions amo
those with a given energy, and also focus only on statist
averages of the energy, rather than considering particula
sults obtained from particular initial conditions. Sato@14# has
recently studied a harmonic oscillator under a tim
dependent forcemẍ52x1a(t) as the simplest nontrivia
example of a system with only macroscopic external ope
tions. Here, the change ofa(t) amounts to a horizontal dis
placement of the potential. He showed analytically, as
can easily confirm, that for an arbitrary functiona(t) the
energy of the oscillator (m/2)ẋ21 1

2 (x2a)2 is strictly non-
decreasingif the average is taken with respect to the init
condition over all initial conditions represented by sta
with a given energy, i.e., over a microcanonical ensem
Only in the limit of a quasistatic process (uda/dtu→0) is the
energy unchanged.

This example demonstrates the irreversibility of a m
chanical system of nonmacroscopic size with properly
fined macroscopic operation. A recent numerical work@15#
investigating a harmonic oscillator with time-depende
spring constantmẍ52k(t)x reveals the same phenome
whenk(t) is constrained to return to its initial value. In th
present context of the analysis of the efficiency of Car
cycle ~Sec. VI!, these findings are both natural and impo
tant, since, if the case were different, one could find a fu
tional form for k(t) for which the adiabatic work on the
system would be less than what we expect for a quasis
process, and the whole cycle could be used to constru
perpetual machine of the second kind.~Note that in the
analysis of Sec. VI we have excluded only marginally t
existence of such a perpetual machine if the loss due to
other sources is made arbitrarily small.!
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It is desirable to obtain a general proof~or counterevi-
dence! of the irreversibility resulting from nonquasistat
processes. A related analysis using path probabilities
been performed for chaotic systems@16#. However, we sus-
pect that the essential mechanism of the irreversibility
lated to the characterization of macroscopic operators, wh
are ignorant of the initial microscopic state of the syste
can be elucidated without resort to chaotic statistics. It is a
a future problem to scrutinize the case in which the topolo
of the energy contour surface in the phase space (Ha5E)
changes at some parameter value, sayac . In such cases
quasistatic processes cannot be extended acrossac @17#.

C. Control of processes by the system itself

As in the case of the ordinary macroscopic Carnot cyc
we have introduced control parameters$k,xH ,xL%. We as-
sumed that the values of these parameters are change
some external agent whose dynamics are external to
equation of motion of the system.

In fact, however, there are many ‘‘self-controlled’’ energ
transducers that contain their own control systems. In s
cases, the identification of the control system is more or l
a matter of interpretation. In the macroscopic world, dc el
tric motors and steam engines are examples, while m
proteins, such as myosins, kinesins, and dyneins, etc.,
microscopic examples@24,25#. Theoretically, the so-called
Feynman ratchet and pawl system@6# has been proposed as
microscopic energy transducer working by itself between
and cool heat baths. In this model, the role of the con
system is played either by the pawl or by the ratchet, depe
ing on which of these two is in direct contact with the co
heat bath. The stochastic energetics of this model have b
analyzed @3,18#. Büttiker’s model @19# is another self-
controlled microscopic transducer. In this model a mass
particle moves while in contact with a heat bath of positio
dependent temperatureT(x)5TH or TL . In this model, the
inertia of the particle serves to switch the particle’s enviro
ment fromT5TH to T5TL , or vice versa. The stochasti
energetics of this model have also been analyzed@20,21#.
Some people have claimed that the Carnot limiting efficien
hmax512TL /TH can be attained in Feynman’s ratchet a
pawl system~see@6# and @22#! and in Büttiker’s model~see
@23#!. With the exception of the original work by Feynma
et al. @6#, where no implementation details are given, the
studies introduced into their analyses some ‘‘gate’’ mec
nism. A study of the energetics of such systems, includ
the action of these gates, has not yet been made.
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APPENDIX A: DERIVATION OF EQ. „21…

For a general HamiltonianHa with a parametera, the
energy distributionPcan

Ha(E;T) corresponding to the canonica
ensemble at temperatureT is

Pcan
Ha~E;T,a!5W~E,a!e[F(T,a)2E]/T, ~A1!

with

W~E,a![
]J~E,a!

]E
,

J~E,a![E
E.Ha

dG, ~A2!

e2F(T,a)/T[E e2Ha /TdG,

where*dG denotes the phase integral. Here,J, or S[ logJ,
is an adiabatic invariant.

In the text,Ha is that of an isolated harmonic oscillato
p2/2m1kx2/2, and we take its spring constantk as a. The
calculation ofJ(E,k) is straightforward, yielding

J~E,k!5
E

2p
Am

k
. ~A3!
er

lu

sk
W(E,a) is, therefore, independent ofE. Thus from Eq.~A1!
we reach Eq.~21!. In general, however,W(E,a) depends on
E, andPcan

Ha(E;T) is not simply an exponential;e2E/T.

APPENDIX B: NULL-RECURRENCE PROPERTY

As $2W° i% are statistically independent of each othe

2w° n constitutes a one-dimensional discrete random wa

To simplify the argument we assume that2W° i takes only
the values61 randomly. If we denote byf 2n the probability
that at the (2n21)th step the random walker comes to t
position11 for the first time, it is known that

f 2n5
1

n22n11 S 2n

n D .
1

A4pn3/2
.

The fact thatf 2n is normalized ((n51
` f 2n51) implies that

this event occurs with probability 1 at somen. On the other
hand, it is also true that

(
n51

`

~2n21! f 2n5`,

which is referred to as the null-recurrence property. Thu
we are to wait until the position of the walker becomes po
tive for theM th time, with M>1, then the ‘‘waiting time’’
is, on the average, infinite.
can
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